Add like
Add dislike
Add to saved papers

Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard- and soft-modelling approach.

This work presents an exploratory study of the photochemical degradation process of decabromodiphenyl ether (decaBDE) and gives an interpretation of the kinetic pathway, species and effects of the key factors involved in the degradation process. Use of lowly brominated diphenyl ethers (PBDE) has been banned by the EU and there seems to be evidence of the photolytic degradation of highly brominated PBDEs into lowly brominated congeners. Hence, the importance of knowing the photodegradation process of decaBDE. The photodegradation was investigated under UV light by UV-spectrophotometric monitoring. A novel hybrid data analysis approach, based on the combination of hard- and soft-spectrophotometric multivariate curve resolution, was applied to elucidate the mechanism of the degradation process, to resolve kinetic profiles and pure spectra of the photodegradation products and to evaluate the rate constants. The photodegradation process could be described with a kinetic model based on three consecutive first-order reactions and a decrease of the degradation process was observed as solvent polarity increased. Complementary identification of photodegradation products by gas chromatography coupled to mass spectrometry using negative chemical ionization (GC-NCI-MS) is attempted. This work presents a novel attempt of describing in a comprehensive way the photochemical degradation process of decaBDE, with all successive steps and related rate constants. This study proves also the potential of the proposed hybrid data analysis methodology as a general strategy to interpret the evolution of these photochemical reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app