Inverse temperature dependence of toughness in an ultrafine grain-structure steel

Yuuji Kimura, Tadanobu Inoue, Fuxing Yin, Kaneaki Tsuzaki
Science 2008 May 23, 320 (5879): 1057-60
Materials are typically ductile at higher temperatures and become brittle at lower temperatures. In contrast to the typical ductile-to-brittle transition behavior of body-centered cubic (bcc) steels, we observed an inverse temperature dependence of toughness in an ultrahigh-strength bcc steel with an ultrafine elongated ferrite grain structure that was processed by a thermomechanical treatment without the addition of a large amount of an alloying element. The enhanced toughness is attributed to a delamination that was a result of crack branching on the aligned {100} cleavage planes in the bundles of the ultrafine elongated ferrite grains strengthened by nanometer-sized carbides. In the temperature range from 60 degrees to -60 degrees C, the yield strength was greater, leading to the enhancement of the toughness.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"