Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK- and JAK/STAT-signaling

Jung-Suk Choi, Yean-Jung Choi, Sung-Yong Shin, Jing Li, Sang-Wook Kang, Ji-Young Bae, Dong Shoo Kim, Geun-Eog Ji, Jung-Sook Kang, Young-Hee Kang
Journal of Nutrition 2008, 138 (6): 983-90
Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized LDL promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. This study investigated multiple mitogen-activated protein kinase (MAPK)-responsive death/survival signaling pathways, through which flavonoids of (-)epigallocatechin gallate (EGCG) and hesperetin exerted antiapoptosis in endothelial cells exposed to oxidized LDL. EGCG and hesperetin substantially diminished the oxidized LDL-induced 2',7'-dichlorofluorecein staining, suggesting that these flavonoids inhibited intracellular accumulation of oxidized LDL-triggered reactive oxygen species and consequent apoptosis. The Western-blot data revealed that oxidized LDL upregulated c-Jun N-terminal kinase (JNK) phosphorylation, which was rapidly reversed by EGCG and hesperetin. They mitigated the consequent activation of the JNK downstream on p53 and c-Jun. Moreover, oxidized LDL increased luciferase activity of p53 in endothelial cells transfected with a p53 promoter construct, the increase of which was strikingly downregulated by EGCG and hesperetin. Surprisingly, hesperetin but not EGCG attenuated phosphorylation of p38MAPK and its downstream c-myc and signal transducers and activators of transcription (STAT)1 evoked by oxidized LDL. This study also attempted to explore a linkage of Janus kinase (JAK)2/STAT3 activation to MAPK signaling in oxidized LDL-induced endothelial apoptosis. Notably, we found that the JAK2 inhibitor substantially blocked the JNK activation. Our findings suggest that EGCG and hesperetin may act as antiatherogenic agents blocking oxidized LDL-induced endothelial apoptosis via differential cellular apoptotic machinery. These data provide evidence that the interplay between p38MAPK and JAK-STAT pathways is involved in dietary flavonoid protection against oxidized LDL through hampering MAPK-dependent pathways involving the activation of JAK2.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"