Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ectopic expression of delta FBJ murine osteosarcoma viral oncogene homolog B mediates transdifferentiation of adipose-like spheroids into osteo-like microtissues.

Differentiation and transdifferentiation strategies have a large role in the manipulation of cells in replacing dysfunctional cells and tissues. We developed adipose-like microtissues using gravity-enforced self-assembly of monodispersed human primary preadipocytes to determine their transdifferentiation capacity to form bone-like tissues. Using lentivirus-derived particles to induce ectopic bone morphogenetic protein (BMP)-2 and delta FBJ murine osteosarcoma viral oncogene homolog B (DeltaFosB) gene expression, we demonstrated a time-dependent induction of osteoblast-specific genes and properties such as calcium deposits, bone-like extracellular matrix (ECM), and matrix mineralization. DeltaFosB was able to trigger partial Pref-1-mediated de-differentiation of adipocytes, which also retained their adipocytic cell phenotype. Osteoblast-specific structures could be co-localized in the ECM of lipid-containing cells analyzed using immunofluorescence and transmission electron microscopy when BMP-2 and DeltaFosB were co-expressed, suggesting that differentiated adipocytes are able to transdifferentiate into osteoblasts via a transient hybrid adipocyte-preadipocyte-osteoblast cell phenotype. Microtissues transgenic for BMP-2 and DeltaFosB expression were able to reproduce bone matrix, which occurs to a lesser extent in conventional two-dimensional (2D) cultures but is known to play a decisive role in the development and function of bone in vivo. This demonstrates that ECM-inclusive studies are essential for future characterization assays. Therefore, 3D cultures provide a superior ex vivo system for the improved characterization of phenotypical and functional alterations resulting from interventions directed toward differentiation processes. Precise control of transdifferentiation of adipocytes into osteoblasts in a 3D culture mimicking in vivo tissue conditions as closely as possible will foster important advances in regenerative medicine and tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app