JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Audiogenic kindling in Wistar and WAG/Rij rats: kindling-prone and kindling-resistant subpopulations.

Epilepsia 2008 October
PURPOSE: Audiogenic kindling (AK) is a model of naturally occurring epileptogenesis triggered by repeated sound stimulation of rats genetically prone to audiogenic seizures. It is accepted that limbic seizure networks underlie progressive changes in behavioral seizure pattern during AK. The present study investigated AK progression in rats susceptible and unsusceptible to absence seizures.

METHODS: Progression of AK as indicated by an appearance and intensification of limbic clonus was examined in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats with genetic absence epilepsy and in Wistar rats.

RESULTS: Subpopulations of kindling-prone and kindling-resistant rats were found in both Wistar and WAG/Rij strains. Despite identical seizure responses to the first sound stimulation, AK progression dramatically differed between the two subpopulations. AK-prone rats exhibited rapid kindling development up to maximal stage-5 severity. In AK-resistant rats, limbic clonus did not appear after 30 stimulations or if it appeared, it did not progress beyond stage 2. The proportions of AK-prone and AK-resistant animals within Wistar and WAG/Rij strains were similar. Comparison of Wistar and WAG/Rij rats within the kindling-prone and kindling-resistant groups did not reveal a significant strain effect on AK progression. However, within the WAG/Rij strain, a significantly higher incidence of absence seizures was found in AK-resistant rats compared to AK-prone rats.

CONCLUSIONS: The present study demonstrates that sensitivity to sound-induced epileptogenesis differs dramatically within Wistar and WAG/Rij strains, whereas genetic susceptibility to absence seizures does not change AK progression significantly. It is supposed that an increased incidence of nonconvulsive seizures and resistance to kindling result from a common seizure modulating mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app