Effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on beta-cell function in patients with type 2 diabetes: a model-based approach

L Xu, C Dalla Man, B Charbonnel, G Meninger, M J Davies, D Williams-Herman, C Cobelli, P P Stein
Diabetes, Obesity & Metabolism 2008, 10 (12): 1212-20

PURPOSE: The purpose of this exploratory analysis was to assess the effect of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on pancreatic beta-cell function using a model-based analysis.

METHODS: Data for this analysis were from three large, placebo-controlled clinical studies that examined sitagliptin 100 mg q.d. as add-on to metformin therapy or as monotherapy over 18 or 24 weeks. In these studies, subsets of patients consented to undergo extensive blood sampling as part of a nine-point meal tolerance test performed at baseline and study end-point. Blood samples were collected at -10, 0, 10, 20, 30, 60, 90, 120 and 180 min relative to the start of a meal and subsequently were assayed for plasma glucose and serum C-peptide concentrations. Parameters for beta-cell function were calculated using the C-peptide minimal model, which estimates insulin secretion rate (ISR) and partitions the ISR into basal (Phi(b); ISR at basal glucose concentrations), static (Phi(s); ISR at above basal glucose concentrations following a meal) and dynamic (Phi(d); ISR in response to the rate of increase in above basal glucose concentrations following a meal) components. The total responsivity index (Phi(total); average ISR over the average glucose concentration) is calculated as a function of Phi(s), Phi(d )and Phi(b. )Insulin sensitivity was assessed with a validated composite index (ISI). Disposition indices (DI), which assess insulin secretion in the context of changes in insulin sensitivity, were calculated as the product of Phiand ISI.

RESULTS: When administered in combination with ongoing metformin therapy or as monotherapy, sitagliptin was associated with substantial reductions in postprandial glycaemic excursion following a meal challenge relative to placebo. Sitagliptin produced significant (p < 0.05 vs. placebo) improvements in Phi(s )and Phi(total), regardless of treatment regimen (add-on to metformin or as monotherapy). For Phi(d), there was a numerical, but not statistically significant, improvement with sitagliptin relative to placebo. Treatment with sitagliptin increased Phi(b), but the difference relative to placebo was only significant with monotherapy. ISI was not significantly different between sitagliptin and placebo. The DIs for the static, dynamic and total measures were significantly (p < 0.05) increased with sitagliptin treatment relative to placebo.

CONCLUSIONS: In this model-based analysis, sitagliptin improved beta-cell function relative to placebo in both fasting and postprandial states in patients with type 2 diabetes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"