Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Telmisartan increases fatty acid oxidation in skeletal muscle through a peroxisome proliferator-activated receptor-gamma dependent pathway.

OBJECTIVES: Telmisartan is an angiotensin II receptor blocker and selective modulator of peroxisome proliferator-activated receptor-gamma reported to increase energy expenditure and improve glucose and lipid metabolism compared with other angiotensin II receptor blockers. As muscle fatty acid oxidation is a major determinant of energy expenditure, we investigated the effects of telmisartan on skeletal muscle fatty acid oxidation in a rat model of the metabolic syndrome.

METHODS: We measured fatty acid oxidation in soleus muscles obtained from polydactylous (PD)/Cub rats fed a high sucrose, high fat diet and treated with either telmisartan or losartan. In addition, we measured fatty acid oxidation in soleus muscle tissue isolated from Sprague-Dawley rats, incubated for 3 h with either telmisartan or valsartan.

RESULTS: Compared with treatment with losartan, treatment with telmisartan was associated with significantly greater palmitate oxidation in skeletal muscle (44.4 +/- 2.9 versus 28.9 +/- 3.2 nmol palmitate/g/2 h, P = 0.004) as well as significantly greater glucose tolerance and significantly lower body weight and visceral adiposity. In addition, in-vitro incubation of skeletal muscle with telmisartan induced significantly greater increase in palmitate oxidation than in-vitro incubation with valsartan (9.4 +/- 1.6 versus 0.2 +/- 4.3 nmol palmitate/g/h, P < 0.05). The increased fatty acid oxidation induced by telmisartan in vitro was blocked by addition of the peroxisome proliferator-activated receptor-gamma antagonist GW9662 (-0.4 +/- 1.8 nmol palmitate/g/h, P < 0.05).

CONCLUSION: The current results are consistent with the possibility that telmisartan may increase energy expenditure and protect against dietary induced obesity and features of the metabolic syndrome at least in part by increasing muscle fatty acid oxidation through activation of peroxisome proliferator-activated receptor-gamma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app