Hemorrhagic shock and resuscitation-mediated tissue water distribution is normalized by adjunctive peritoneal resuscitation

El Rasheid Zakaria, Paul J Matheson, Michael F Flessner, R Neal Garrison
Journal of the American College of Surgeons 2008, 206 (5): 970-80; discussion 980-3

BACKGROUND: Adjunctive direct peritoneal resuscitation (DPR) from hemorrhagic shock (HS) improves intestinal blood flow and abrogates postresuscitation edema. HS causes water shifts as a result of sodium redistribution and changes in transcapillary Starling forces. Conventional resuscitation (CR) with crystalloid aggravates water sequestration. We examined the compartment pattern of organ tissue water after HS and CR, and modulation of tissue edema by adjunctive DPR.

STUDY DESIGN: Rats were hemorrhaged (40% mean arterial pressure for 60 minutes) and assigned to four groups (n = 7): sham, no HS; HS no resuscitation; HS+CR (shed blood plus 2 volumes Ringer's lactate); and HS+CR+DPR (20 mL clinical intraperitoneal (IP) dialysis fluid). Isotopic markers determined equilibrium distribution volumes [V(D)] in gut, liver, lung, and muscle by quantitative autoradiography (2-hour postresuscitation). Total tissue water (TTW) was determined by wet-dry weights. Extracellular water was measured from (14)C-mannitol V(D), and intravascular volume (IVV) from (131)I-labeled IgG V(D). Cellular and interstitial water volumes were calculated.

RESULTS: HS alone decreased IVV in all tissues and TTW in gut, lung, and muscle, but not liver, compared with shams. IVV remained decreased with all resuscitations despite restoration of central hemodynamics. CR caused interstitial edema in gut, liver, and muscle, and cellular edema in lung. DPR reduced (liver, muscle) or prevented (gut, lung) these volume shifts.

CONCLUSIONS: HS decreases IVV. HS-induced water shifts are organ-specific and prominent in gut, lung, and muscle. CR restores central hemodynamics, does not restore IVV, and alters organ-specific TTW distribution. Adjunctive DPR with IP dialysis fluid normalizes TTW and water compartment distribution and prevents edema. Combined effect of DPR and intravascular fluid replacement appears to prevent global tissue edema and improve outcomes from HS.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"