Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Magnolol elicits activation of the extracellular signal-regulated kinase pathway by inducing p27KIP1-mediated G2/M-phase cell cycle arrest in human urinary bladder cancer 5637 cells.

Magnolol has been reported to play a role in antitumor activity. However, the relevant pathway integrating cell cycle regulation and signaling pathways involved in growth inhibition in cancer cells remains to be identified. In the present study, magnolol treatment of these cells resulted in significant dose-dependent growth inhibition together with apoptosis, G1- and G2/M-phase cell cycle arrest at a 60 microM (IC50) dose in 5637 bladder cancer cells. In addition, magnolol treatment strongly induced p27KIP1 expression, and down-regulated expression of cyclin-dependent kinases (CDKs) and cyclins. Moreover, treatment with magnolol-induced phosphorylation of ERK, p38 MAP kinase, and JNK. Among the pathway inhibitors examined, only PD98059, an ERK-specific inhibitor, blocked magnolol-dependent p27KIP1 expression. Blockade of ERK function consistently reversed magnolol-mediated inhibition of cell proliferation and decreased G2/M cell cycle proteins, but not G1 cell cycle proteins. Furthermore, magnolol treatment increased both Ras and Raf activation. Transfection of cells with dominant negative Ras (RasN17) and Raf (RafS621A) mutant genes suppressed magnolol-induced ERK activity and p27KIP1 expression. Finally, the magnolol-induced reduction in cell proliferation and G2/M cell cycle proteins was also abolished in the presence of RasN17 and RafS621A mutant genes. These data demonstrate that the Ras/Raf/ERK pathway participates in p27KIP1 induction, leading to a decrease in the levels of cyclin B1/Cdc2 complexes and magnolol-dependent inhibition of cell growth. Overall, these novel findings concerning the molecular mechanisms of magnolol in 5637 bladder cancer cells provide a theoretical basis for therapeutic treatment of malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app