JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Key role of platelet procoagulant activity in tissue factor-and collagen-dependent thrombus formation in arterioles and venules in vivo differential sensitivity to thrombin inhibition.

OBJECTIVE: Blood coagulation and platelet activation are mutually dependent processes, but contribute differently to venous and arterial thrombosis. We investigated the interplay of these processes in vivo in a mouse model of arteriolar and venular thrombus formation.

METHODS: Thrombus formation was studied by intravital (fluorescence) microscopy after topical application of FeCl3 on mouse mesenteric microvessels.

RESULTS: Both in arterioles and venules, the thrombus-forming process relied on tissue factor-factor VII(a) interaction, collagen exposure, and glycoprotein VI-mediated platelet activation. Arterial thrombus formation was impaired by mild thrombin inhibition or platelet inhibition, while venous thrombosis was only suppressed by strong thrombin inhibition or by mild thrombin inhibition together with platelet inhibition. Phosphatidylserine-exposing platelets were present in thrombi of both vessel types, as detected with fluorescently labeled annexin A5. Injection of annexin A5 to shield exposed phosphatidylserine abolished thrombus formation in arterioles and venules, while mutant M1234-annexin A5 was ineffective. Arterial and venous thrombus formations were only slightly affected in mice carrying the factor V Leiden mutation, suggesting insensitivity to factor Va inactivation.

CONCLUSIONS: In this microvascular model, the formation of both arterial and venous thrombi relies on collagen-induced platelet activation and tissue factor-induced thrombin generation. Activated, phosphatidylserine-exposing platelets play a key role in thrombus growth in arterioles and venules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app