Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early gene expression in human lymphocytes after gamma-irradiation-a genetic pattern with potential for biodosimetry.

PURPOSE: Identification of early radiation response genes (ERG) in human lymphocytes after gamma-irradiation by using the whole-human-genome DNA-microarrays and the evaluation of their possible role in rapid radiation biodosimetry by applying real-time quantitative polymerase chain reaction (RT-qPCR) methodology for validation in a small group of human individuals.

MATERIALS AND METHODS: Whole blood from a healthy human donor was exposed at 37 degrees C to 137Cs gamma-radiations (absorbed dose: 1-4 Gy). Fifteen minutes following irradiation the lymphocytes were isolated from the blood (for 2 h at 20 degrees C) and their gene expression was investigated using the DNA-microarrays. Subsequently, 14 genes were selected and validated using the TaqMan probes based upon the RT-qPCR assay within a group of 6 human donors.

RESULTS: A dose-related relative change in quantitative gene expression using the DNA-microarray assay was demonstrated in 24 of 102 genes. Up-regulation of expression was observed in 15 genes: CD69 (CD69 molecule), CDKN1A (cyclin-dependent kinase inhibitor 1A), EGR1 (early growth response 1), EGR4 (early growth response 4), FLJ35725 (chromosome 4 ORF 23), hCG2041177 (hCG - human Celera Genome), hCG1643466.2, IFN-gamma (interferon-gamma), ISG20L (interferon stimulated exonuclease gene 20 kDa - like 1), c-JUN (jun oncogene), MDM2 (mouse double minute 2), MUC5B (mucine), PLK2 (polo-like kinase 2), RND1 (rho-family GTPase 1) and TNFSF9 (tumour necrosis factor superfamily member 9). Down-regulation of expression was found in the remaining nine genes: GRIK3 (glutamate receptor ionotropic kainate 3), hCG1985174, hCG1998530, hCG2038519, OCLN (occludin), RPL10A (ribosomal protein L10a), SERHL2 (serine hydrolase-like 2), SGK3 (serum/glucocorticoid regulated kinase 3) and STARD13 (START domain containing 13).

CONCLUSION: A significant correlation between absorbed radiation dose and change in relative gene expression was particularly evident for EGR1, EGR4, IFN-gamma, c-JUN and TNFSF9 (p < or = 0.05). Results warrant the further investigation of these ERG as potential biodosimetric markers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app