COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Circulating and placental endoglin concentrations in pregnancies complicated by intrauterine growth restriction and preeclampsia.

Placenta 2008 June
Inadequate trophoblast invasion and spiral artery remodeling leading to poor placental perfusion and hypoxia are believed to underlie preeclampsia (PE) and intrauterine growth restriction (IUGR). Recent studies implicate increased circulating endoglin as a contributor to the pathogenesis of PE. The objective of this study was to determine whether placental and circulating endoglin concentrations are altered in pregnancies complicated by intrauterine growth restricted (IUGR) infants and to address the role of hypoxia on the regulation of placental endoglin. We analyzed 10 placentas each from normal pregnant (NP), PE, and IUGR subjects. Endoglin levels were 2.5-fold higher in preeclamptic placentas compared to NP (15.4+/-2.6 versus 5.7+/-1.0, p<0.01). In contrast, endoglin levels were similar in NP and IUGR placentas (5.7+/-1.0 vs 5.9+/-1.1, p=NS). Placentas from pregnancies with both PE and IUGR exhibited endoglin levels comparable to the PE group and significantly different from normotensive pregnancies with and without IUGR pregnancies (mean 14.9+/-4.0, n=9, p=0.013). Soluble endoglin concentrations in maternal plasma were comparable in NP and IUGR, but higher in women with PE (n=10 per group, p<0.05). Despite a 2-fold increase in hypoxia inducible factor, HIF-1alpha, we did not observe endoglin upregulation in NP, PE, or IUGR placental villous explants exposed to hypoxia (2% oxygen). In contrast to PE, placental or circulating endoglin is not increased in normotensive women delivering small, asymmetrically grown (IUGR) infants at term. The placentas of women with IUGR appear to be fundamentally different from PE women with respect to endoglin, despite the proposed common pathology of deficient trophoblast invasion/spiral artery remodeling and poor placental perfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app