Add like
Add dislike
Add to saved papers

Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake.

PURPOSE: This study tested the hypothesis that the magnitude of cardiovascular (CV) drift and decrease in maximal oxygen uptake (V[spacing dot above]O2max) would be greater at 35 degrees C than at 22 degrees C.

METHODS: The increase in HR and decrease in stroke volume (SV) between 15 and 45 min of cycling at 59.2 +/- 1.9% V[spacing dot above]O2max (CV drift) was measured in hot (HEAT, 35 degrees C) and cool (COOL, 22 degrees C) ambient temperatures in 10 endurance-trained men (age = 23 +/- 3 yr, V[spacing dot above]O2max = 64.7 +/- 8.7 mL.kg.min). V[spacing dot above]O2max was measured immediately after the 45 min of cycling and again under both ambient temperature conditions on separate days after 15 min of cycling. This design permitted assessment of V[spacing dot above]O2max between the same time points that CV drift occurred. Fluid to replace sweat losses was provided during all trials.

RESULTS: CV drift and the associated decrease in V[spacing dot above]O2max was greater (P < 0.05) in HEAT versus COOL. HR increased 11% (P < 0.05), SV decreased 11% (P < 0.05), and V[spacing dot above]O2max fell 15% (P < 0.05) between 15 and 45 min in HEAT, whereas HR and SV changed less (+2% and -2% for HR and SV, respectively, P < 0.05), and there was no significant decrease in V[spacing dot above]O2max (5%, P > 0.05) between 15 and 45 min in COOL.

CONCLUSION: These data demonstrate the magnitude of CV drift during prolonged submaximal exercise, and the accompanying decrease in V[spacing dot above]O2max measured immediately thereafter is greater in a hot than in a cool environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app