Add like
Add dislike
Add to saved papers

Anatomy-based inverse planning simulated annealing optimization in high-dose-rate prostate brachytherapy: significant dosimetric advantage over other optimization techniques.

PURPOSE: To perform an independent validation of an anatomy-based inverse planning simulated annealing (IPSA) algorithm in obtaining superior target coverage and reducing the dose to the organs at risk.

METHOD AND MATERIALS: In a recent prostate high-dose-rate brachytherapy protocol study by the Radiation Therapy Oncology Group (0321), our institution treated 20 patients between June 1, 2005 and November 30, 2006. These patients had received a high-dose-rate boost dose of 19 Gy to the prostate, in addition to an external beam radiotherapy dose of 45 Gy with intensity-modulated radiotherapy. Three-dimensional dosimetry was obtained for the following optimization schemes in the Plato Brachytherapy Planning System, version 14.3.2, using the same dose constraints for all the patients treated during this period: anatomy-based IPSA optimization, geometric optimization, and dose point optimization. Dose-volume histograms were generated for the planning target volume and organs at risk for each optimization method, from which the volume receiving at least 75% of the dose (V(75%)) for the rectum and bladder, volume receiving at least 125% of the dose (V(125%)) for the urethra, and total volume receiving the reference dose (V(100%)) and volume receiving 150% of the dose (V(150%)) for the planning target volume were determined. The dose homogeneity index and conformal index for the planning target volume for each optimization technique were compared.

RESULTS: Despite suboptimal needle position in some implants, the IPSA algorithm was able to comply with the tight Radiation Therapy Oncology Group dose constraints for 90% of the patients in this study. In contrast, the compliance was only 30% for dose point optimization and only 5% for geometric optimization.

CONCLUSIONS: Anatomy-based IPSA optimization proved to be the superior technique and also the fastest for reducing the dose to the organs at risk without compromising the target coverage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app