Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors.

Cancer Research 2008 May 2
Selective kinase inhibitors have had a substantial impact on the field of medical oncology. Whereas these agents can elicit dramatic clinical responses in some settings, their activity is generally limited to a subset of treated patients whose tumor cells harbor a specific genetic lesion. We have established an automated platform for examining the sensitivity to various molecularly targeted inhibitors across a large panel of human tumor-derived cell lines to identify additional genotype-correlated responses that may be clinically relevant. Among the inhibitors tested in a panel of 602 cell lines derived from a variety of human cancers, we found that a selective inhibitor of the anaplastic lymphoma kinase (ALK) potently suppressed growth of a small subset of tumor cells. This subset included lines derived from anaplastic large cell lymphomas, non-small-cell lung cancers, and neuroblastomas. ALK is a receptor tyrosine kinase that was first identified as part of a protein fusion derived from a chromosomal translocation detected in the majority of anaplastic large cell lymphoma patients, and has recently been implicated as an oncogene in a small fraction of non-small-cell lung cancers and neuroblastomas. Significantly, sensitivity in these cell lines was well correlated with specific ALK genomic rearrangements, including chromosomal translocations and gene amplification. Moreover, in such cell lines, ALK kinase inhibition can lead to potent suppression of downstream survival signaling and an apoptotic response. These findings suggest that a subset of lung cancers, lymphomas, and neuroblastomas that harbor genomic ALK alterations may be clinically responsive to pharmacologic ALK inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app