OPEN IN READ APP
JOURNAL ARTICLE
REVIEW

Logistic regression

Todd G Nick, Kathleen M Campbell
Methods in Molecular Biology 2007, 404: 273-301
18450055
The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine defines logistic regression models as "statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable." Logistic regression models are used to study effects of predictor variables on categorical outcomes and normally the outcome is binary, such as presence or absence of disease (e.g., non-Hodgkin's lymphoma), in which case the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors and treatments) the model is referred to as a multiple or multivariable logistic regression model and is one of the most frequently used statistical model in medical journals. In this chapter, we examine both simple and multiple binary logistic regression models and present related issues, including interaction, categorical predictor variables, continuous predictor variables, and goodness of fit.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
18450055
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"