Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Malignant alterations following early blockade of nitric oxide synthase in hypertensive rats.

Nitric oxide (NO) is important for the homeostasis of organ functions. We studied the structural and functional changes in the cardiovascular (CV) and renal systems following early NO deprivation by various nonspecific and specific NO synthase (NOS) inhibitors: N-nitro-L-arginine methyl ester (L-NAME), N-nitro-L-arginine (L-NA), S-methyl-isothiourea (SMT), and L-N6-(1-iminoethyl)-lysine (L-Nil). The aim is to elucidate the involvement of NO through endothelial or inducible NOS (eNOS and iNOS). Drugs were given to spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar Kyoto rats (WKY) from a young age (5-wk-old). Physiological, biochemical, and pathological examinations were performed. L-NAME and L-NA treatment caused a rapid increase in tail cuff pressure (TCP). The TCP of SHR reached a malignant level within 30 days with signs of stroke, proteinuria [corrected] severe glomerular sclerosis, and moderate ventricular hypertrophy (VH). The plasma nitrite/nitrate was reduced, while creatinine, urea nitrogen and uric acid were elevated. The renal tissue cyclic guanosine monophosphate (cGMP) was decreased with an elevated collagen content. The numbers of sclerotic glomeruli, arteriolar and glomerular injury scores were markedly increased, accompanied by reduction in renal blood flow, filtration rate, and fraction. Plasma endothelin-1 was increased following L,-NAME or L-NA treatment for 10 days. The expression of eNOS and iNOS mRNA was depressed by L-NAME and L-NA. The relevant iNOS inhibitors, SMT and L-Nil depressed the iNOS expression, but did not produce significant changes in CV and renal systems. The continuous release of NO via the eNOS system provides a compensatory mechanism to prevent the genetically hypertensive rats from rapid progression to malignant phase. Removal of this compensation results in VH, stroke, glomerular damage, renal function impairment, and sudden death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app