Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Neuroprotective effects of infliximab in experimental spinal cord injury.

BACKGROUND: The aim of the study is to assess the effects of infliximab, a TNF-alpha receptor blocker, in a spinal cord clip compression injury model.

METHODS: Clip compression injury model was used for producing spinal cord injury on 32 adult, male Wistar rats (Gazi University Animal Research Laboratory, Ankara, Turkey). After exposing the vertebral column between T7 and T10, total laminectomy was performed with the assistance of a high-speed drill and a surgical microscope. The dura was left intact. Spinal cord injury was performed on all rats with application of a 70-g closing force aneurysm clip for 1 minute. The rats were randomly allocated into 4 groups. Control group received no further therapy, whereas the other 3 groups received methylprednisolone (30 mg/kg intraperitoneal), infliximab (5 mg/kg subcutaneous), and a mixture of these 2 agents. All rats were killed 72 hours later, and the level of lipid peroxides in traumatized spinal cord tissue were measured as thiobarbituric acid-reactive material and determined using the method of Mihara and Uchiyama (Determination of malonaldehyde precursor in tissue by thiobarbituric acid test. Anal Biochem 1978;86(1):271-8).

RESULTS: Treatment with infliximab and methylprednisolone decreased MDA levels in rats with spinal cord injury with a statistically significant difference. In addition, combined therapy achieved a more profound decrease in tissue MDA levels, which was also statistically significant.

CONCLUSIONS: Infliximab is found as effective as methylprednisolone on spinal cord clip compression injury. Moreover, the combination of these 2 agents demonstrated higher efficacy suggesting a synergistic effect between these 2 agents. However, further studies regarding functional and behavioral analyses as well as biochemical markers are required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app