Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Tissue microstructural changes are independently associated with cognitive impairment in cerebral amyloid angiopathy.

BACKGROUND AND PURPOSE: Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment.

METHODS: Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0+/-22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding.

RESULTS: Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4x10(-4) versus 11.7x10(-4) mm(2)/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1x10(-4) mm(2)/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04).

CONCLUSIONS: Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These results suggest that global MRI diffusion changes are sensitive to clinically relevant microstructural alterations and may be useful markers of CAA-related tissue damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app