Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells.

Osteoinductivity of hydroxyapatite (HA) was investigated using uncommitted pluripotent mouse stem cells, C3H10T1/2 in an in vitro differentiation assay. For comparative analysis, the cells were cultured on substrates made of osteoinductive HA, with biocompatible titanium and plastics as the negative control. HA exhibited the ability to induce expression of osteo-specific genes in C3H10T1/2, including alkaline phosphatase (ALP), type I collagen, and osteocalcin; compared with its insignificant up-regulation of the same genes in osteoblast-like cells, Saos-2. HA osteoinductivity exhibited in C3H10T1/2 was comparable to that of a bone morphogenetic protein (BMP) with reference to the up-regulation of osteo-specific genes except the core binding factor 1 (Cbfa1, Runx). This result implies a difference in osteogenic induction pathway initiated by HA and BMP. Using this mesenchymal stem cells (MSC) culture assay, osteoinductivity was also demonstrated to be present in the conditioned medium derived from MSC cultured on HA substrates. This conditioned medium exhibited excellent ability to up-regulate ALP in the absence of HA and BMP. The results suggest that the HA can interact with the cells and generate potent inductive substance released into the medium. Such substance in turn is able to induce uncommitted cells to differentiate into the osteolineage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app