REVIEW
Add like
Add dislike
Add to saved papers

ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium.

The epidermal growth factor (EGF) receptor (or ErbB1) and the related ErbB4 are transmembrane receptor protein tyrosine kinases which bind extracellular ligands of the EGF family. ErbB2 and ErbB3 are "co-receptors" structurally related to ErbB1/ErbB4, but ErbB2 is an "orphan" receptor and ErbB3 lacks tyrosine kinase activity. However, both are important in transmembrane signalling. All ErbB receptors/ligands are intimately involved in the regulation of cell growth, differentiation and survival, and their dysregulation contributes to some human malignancies. After extracellular ligand binding, receptor dimerisation and transautophosphorylation of intracellular C-terminal tyrosine residues, they bind signalling proteins which recognise specific tyrosine-phosphorylated motifs. This leads to activation of multiple signalling pathways, notably the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and the phosphoinositide 3-kinase (PI3K)/protein kinase B [PKB/(Akt)] pathway. In heart, targeted deletion of ErbB2, ErbB3, ErbB4 and some ErbB receptor extracellular ligands leads to embryonic lethality resulting from cardiovascular defects. ErbB receptor ligands improve cardiac myocyte viability and are hypertrophic, partly because of activation of ERK1/2 and/or PI3K/PKB(Akt). Furthermore, ErbB transactivation by Gq protein-coupled receptor (GqPCR) signalling may mediate the hypertrophic effects of GqPCR agonists. The utility of anthracyclines in cancer chemotherapy can be limited by their cardiotoxic side effects and these may be counteracted by ErbB receptor ligands. ErbB2 is the target of anti-cancer monoclonal antibody trastuzumab (Herceptin), and its myocardial downregulation may account for the occasional cardiotoxicity of this therapy. Here, we review the basic biochemistry of ErbB receptors/ligands, and emphasise their particular roles in the myocardium.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app