JOURNAL ARTICLE

Ammonia-oxidizing archaea: important players in paddy rhizosphere soil?

Xue-Ping Chen, Yong-Guan Zhu, Yue Xia, Ju-Pei Shen, Ji-Zheng He
Environmental Microbiology 2008, 10 (8): 1978-87
18430011
The diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in paddy soil with different nitrogen (N) fertilizer amendments for 5 weeks were investigated using quantitative real-time polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE) jand clone library analysis based on the ammonia monooxygenase alpha-subunit (amoA) gene. Ammonia-oxidizing archaea predominated among ammonia-oxidizing prokaryotes in the paddy soil, and the AOA:AOB DNA-targeted amoA gene ratios ranged from 1.2 to 69.3. Ammonia-oxidizing archaea were more abundant in the rhizosphere than in bulk soil. Rice cultivation led to greater abundance of AOA than AOB amoA gene copies and to differences in AOA and AOB community composition. These results show that AOA is dominant in the rhizosphere paddy soil in this study, and we assume that AOA were influenced more by exudation from rice root (e.g. oxygen, carbon dioxide) than AOB.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18430011
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"