Stem cell and regenerative science applications in the development of bioengineering of renal tissue

Laura Perin, Stefano Giuliani, Sargis Sedrakyan, Stefano DA Sacco, Roger E De Filippo
Pediatric Research 2008, 63 (5): 467-71
A rising number of patients with acute and chronic renal failure worldwide have created urgency for clinicians and investigators to search out alternative therapies other than chronic renal dialysis and/or organ transplantation. This review focuses on the recent achievements in this area, and discusses the various approaches in the development of bioengineering of renal tissue including recent discoveries in the field of regenerative medicine research and stem cells. A variety of stem cells, ranging from embryonic, bone marrow, endogenous, and amniotic fluid, have been investigated and may prove useful as novel alternatives for organ regeneration both in vitro and in vivo. Tissue engineering, developmental biology, and therapeutic cloning techniques have significantly contributed to our understanding of some of the molecular mechanisms involved in renal regeneration and have demonstrated that renal tissue can be generated de novo with similar physiologic functions as native tissue. Ultimately all of these emerging technologies may provide viable therapeutic options for regenerative medicine applications focused on the bioengineering of renal tissue for the future.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"