Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Measurement of stride parameters using a wearable GPS and inertial measurement unit.

Both GPS and inertial measurement units (IMUs) have been extensively used in biomechanical studies. Expensive high accuracy GPS units can provide information about intrastride speed and position, but their application is limited by their size and cost. Single and double integration of acceleration from IMU provides information about short-term fluctuations in speed and position, but suffers from integration error over a longer period of time. The integration of GPS and IMU has been widely used in large and expensive units designed for survey and vehicle navigation. Here we propose a data fusion scheme, which is a Kalman filter based complementary filter and enhances the frequency response of the GPS and IMU used alone. We also report the design of a small (28 g) low cost GPS/IMU unit. Its accuracy after post-processing with the proposed data fusion scheme for determining average speed and intrastride variation was compared to a traditional high cost survey GPS. The low cost unit achieved an accuracy of 0.15 ms(-1) (s.d.) for horizontal speed in cycling and human running across a speed range of 3-10 ms(-1). The stride frequency and vertical displacement calculated based on measurements from the low cost GPS/IMU units had an s.d. of 0.08 Hz and 0.02 m respectively, compared to measurements from high performance OEM4 GPS units.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app