JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Quantitative magnetic resonance spectroscopy in the entire human cervical spinal cord and beyond at 3T.

Quantitative magnetic resonance spectroscopy (MRS) amends differential diagnostics of neurological pathology. However, due to technical challenges, it has rarely been applied to the spinal cord and has mainly been restricted to the very upper part of the cervical spine. In this work, an improved acquisition protocol is proposed that takes technical problems as strong magnetic field inhomogeneities, pulsatile flow of the cerebrospinal fluid (CSF), and small voxel size into account. For that purpose, inner-volume saturated point-resolved spectroscopy sequence (PRESS) localization, ECG triggering, and localized higher-order shimming and F0 determination, based on high-resolution cardiac-triggered static magnetic field B0 mapping, are combined. For inner-volume saturation a highly selective T1- and B1-insensitive outer-volume suppression (OVS) sequence based on broadband RF pulses with polynomial-phase response (PPR) is used. Validation is performed in healthy volunteers and patients with multiple sclerosis and intramedullary tumors. The applicability of spinal cord MRS is extended to the entire cervical spine. Spectral quality and its consistency are improved. In addition, high quality MRS patient data from a lesion that occluded the spinal canal in the thoracic spinal cord could be acquired. A quantitative analysis of patient spectra and spectra from healthy volunteers at different positions along the spinal cord underlines the diagnostic value of spinal cord MRS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app