Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae).

Bark volatiles from green ash Fraxinus pennsylvanica were tested for electrophysiological activity by Agrilus planipennis using gas chromatographic-electroantennographic detection (GC-EAD) and for behavioral activity using baited purple traps in Michigan. GC-EAD analysis of the headspace volatiles of bark tissue samples from 0- and 24-h-old fully girdled (stressed) ash trees showed that the latter had elevated sesquiterpene levels. Six of the elevated compounds consistently elicited antennal responses by both male and female A. planipennis. Five of the antennally active compounds were identified as alpha-cubebene, alpha-copaene, 7-epi-sesquithujene, trans-beta-caryophyllene, and alpha-humulene (alpha-caryophyllene). The sixth EAD-active compound remains unidentified. We monitored capture of adult A. planipennis on traps baited with several combinations of ash tree volatiles. Treatments included two natural oil distillates (Manuka and Phoebe oil) that were found to contain, respectively, high concentrations of four and five of the six antennally active ash bark volatiles. A four-component leaf lure developed by the USDA Forest Service and Canadian Forest Service was also tested. In three separate field studies, Manuka oil-baited traps caught significantly more adult beetles than unbaited traps. Lures designed to release 5, 50, and 500 mg of Manuka oil per day all caught more insects than unbaited traps. In a field test comparing and combining Phoebe oil with Manuka oil, Phoebe oil-baited traps caught significantly more beetles than either Manuka oil-baited traps or unbaited traps. We hypothesize that the improved attractancy of Phoebe oil to A. planipennis over Manuka oil is caused by the presence of the antennally active sesquiterpene, 7-epi-sesquithujene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app