COMPARATIVE STUDY
JOURNAL ARTICLE

Myeloablative 131I-tositumomab radioimmunotherapy in treating non-Hodgkin's lymphoma: comparison of dosimetry based on whole-body retention and dose to critical organ receiving the highest dose

Joseph G Rajendran, Ajay K Gopal, Darrel R Fisher, Larry D Durack, Ted A Gooley, Oliver W Press
Journal of Nuclear Medicine 2008, 49 (5): 837-44
18413376

UNLABELLED: Myeloablative radioimmunotherapy using (131)I-tositumomab (anti-CD20) monoclonal antibodies is an effective therapy for B-cell non-Hodgkin's lymphoma. The amount of radioactivity for radioimmunotherapy may be determined by several methods, including those based on whole-body retention and on dose to a limiting normal organ. The goal of each approach is to deliver maximal myeloablative amounts of radioactivity within the tolerance of critical normal organs.

METHODS: Records of 100 consecutive patients who underwent biodistribution and dosimetry evaluation after tracer infusion of (131)I-tositumomab before radioimmunotherapy were reviewed. We assessed organ and tissue activities over time by serial gamma-camera imaging to calculate radiation-absorbed doses. Organ volumes were determined from CT scans for organ-specific dosimetry. These dose estimates helped us to determine therapy on the basis of projected dose to the critical normal organ receiving a maximum tolerable radiation dose. We compared organ-specific dosimetry for treatment planning with the whole-body dose-assessment method by retrospectively analyzing the differences in projected organ-absorbed doses and their ratios.

RESULTS: Mean organ doses per unit of administered activity (mGy/MBq) estimated by both methods were 0.33 for liver and 0.33 for lungs by the whole-body method and 1.52 for liver and 1.74 for lungs by the organ-specific method (P=0.0001). The median differences between methods were 0.92 mGy/MBq (range, 0.36-2.2 mGy/MBq) for lungs, 0.82 mGy/MBq (range, 0.28-1.67 mGy/MBq) for liver, and -0.01 mGy/MBq (range, -0.18-0.16 mGy/MBq) for whole body. The median ratios of the treatment activities based on limiting normal-organ dose were 5.12 (range, 2.33-10.01) for lungs, 4.14 (range, 2.16-6.67) for liver, and 0.94 (range, 0.79-1.22) for whole body. We found substantial differences between the dose estimated by the 2 methods for liver and lungs (P=0.0001).

CONCLUSION: Dosimetry based on whole-body retention will underestimate the organ doses, and a preferable approach is to evaluate organ-specific doses by accounting for actual radionuclide biodistribution. Myeloablative treatments based on the latter approach allow administration of the maximum amount of radioactivity while minimizing toxicity.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18413376
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"