JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

CD4+ T lymphocytes mediate hypercholesterolemia-induced endothelial dysfunction via a NAD(P)H oxidase-dependent mechanism.

Although hypercholesterolemia is known to impair endothelium-dependent vasodilation (EDV) long before the appearance of atherosclerotic plaques, it remains unclear whether the immune mechanisms that have been implicated in atherogenesis also contribute to the early oxidative stress and endothelial cell dysfunction elicited by hypercholesterolemia. EDV (wire myography), superoxide generation (cytochrome c reduction), and NAD(P)H oxidase mRNA expression were monitored in aortic rings from wild-type (WT) and mutant mice placed on either a normal diet or a cholesterol-enriched diet (HC) for 2 wk. WT mice on HC exhibited impaired EDV, enhanced superoxide generation, and increased expression of NAD(P)H oxidase subunit Nox-2 mRNA. The impaired EDV and increased superoxide generation induced by HC were significantly blunted in severe combined immunodeficient (SCID) mice and CD4+ T lymphocyte-deficient mice. These responses were also attenuated in HC mice genetically deficient in IFN-gamma; however, adoptive transfer of WT-HC CD4+ T lymphocytes to IFN-gamma-deficient recipients restored HC-induced responses. The HC-induced impaired EDV and oxidative stress were also attenuated in HC mice genetically deficient in Nox-2 (gp91(phox-/-)) and in WT-->gp91(phox-/-)-HC chimeras. HC-induced gp91(phox) mRNA expression was significantly blunted in mice deficient in CD4+ T cells or IFN-gamma and was restored with adoptive transfer of WT-HC CD4+ T cells to IFN-gamma-deficient recipients. These findings implicate the immune system in the early endothelial cell dysfunction associated with hypercholesterolemia and are consistent with a mechanism of impaired EDV that is mediated by CD4+ T cells and IFN-gamma, acting through the generation of superoxide from vascular NAD(P)H oxidase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app