JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne "click" chemistry.

The concept of "click" chemistry, introduced by Sharpless and coworkers a couple of years ago, promotes the use of efficient, selective and versatile chemical reactions in synthetic chemistry. For instance, the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is regarded as a prime example of "click" chemistry. This reaction is regioselective, chemoselective and moreover can be performed in aqueous medium at room or physiological temperature. Thus, CuAAC became lately a very popular ligation tool in biological and medical sciences. Several hundred of articles exploring the synthetic possibilities of CuAAC in biosciences have been published within the last four years. The aim of the present review is to give an overall--non exhaustive--picture of this emerging field of research. The advantages and versatility of CuAAC in scientific disciplines as diverse as drug discovery, biochemistry, bioconjugates synthesis, drug-delivery, gene therapy, bioseparation or diagnostics are presented and discussed in detail.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app