JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge.

Biosorption potential of Penicillium simplicissimum (Penicillium sp.) immobilized within loofa sponge (PSILS) for lead and copper from aqueous media was explored. The effects of pH, contact time and initial concentration were studied in batch experiments. The maximum uptake of metal ions was obtained at pH 5.0. Biosorption equilibrium was established by 60 min. The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to study the kinetics of the biosorption processes. The pseudo-second-order kinetic model provided the best correlation (R(2)>0.999) of the experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The maximum heavy metal ions adsorbed was found to be 152.6 and 112.3mg/g for Pb(II) and Cu(II), respectively. It was found that the biosorption of both Pb(II) and Cu(II) on PSILS was correlated well (R(Pb)(2)=0.999 and R(Cu)(2)=0.9978) with the Langmuir equation as compared to Freundlich isotherm equation under the concentration range studied. PSILS was regenerated by washing with a 100mM solution of HCl. The desorption efficiency was as high as 98%. The PSILS was reused in five adsorption-desorption cycles with negligible decrease in biosorption capacity. The present work showed that PSILS was an efficient biosorbent for removal of heavy metal ions from aqueous solution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app