JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MS-275, a novel histone deacetylase inhibitor with selectivity against HDAC1, induces degradation of FLT3 via inhibition of chaperone function of heat shock protein 90 in AML cells.

Leukemia Research 2008 September
This study explored the effect of MS-275, a novel histone deacetylase inhibitor (HDACI), against a variety of human leukemia cells with defined genetic alterations. MS-275 profoundly induced growth arrest of acute myelogenous leukemia (AML) MOLM13 and biphenotypic leukemia MV4-11 cells, which possess internal tandem duplication mutation in the fms-like tyrosine kinase 3 (FLT3) gene (FLT3-ITD), with IC50s less than 1 microM, as measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay on day two of culture. Exposure of these cells to MS-275 decreased levels of total, as well as, phosphorylated forms of FLT3, resulting in inactivation of its downstream signal pathways, including Akt, ERK, and STAT5. Further studies found that MS-275 induced acetylation of heat shock protein 90 (HSP90) in conjunction with ubiquitination of FLT3, leading to degradation of FLT3 proteins in these cells. This was blunted by treatment with the proteasome inhibitor bortezomib, confirming that FLT was degraded via ubiquitin/proteasome pathway. Moreover, we found that further inhibition of MEK/ERK signaling potentiated the action of MS-275 in leukemia cells. Taken together, MS-275 may be useful for treatment of individuals with leukemia possessing activating mutation of FLT3 gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app