JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Localized surface plasmon resonances in aluminum nanodisks.

Nano Letters 2008 May
The plasmonic properties of arrays of supported Al nanodisks, fabricated by hole-mask colloidal lithography (HCL), are analyzed for the disk diameter range 61-492 nm at a constant disk height of 20 nm. Strong and well-defined (UV-vis-NIR) localized surface plasmon resonances are found and experimentally characterized with respect to spectral peak positions, peak widths, total cross sections, and radiative and nonradiative decay channels. Theoretically, the plasmon excitations are described by electrostatic spheroid theory. Very good qualitative and quantitative agreement between model and experiment is found for all these observables by assuming a nanoparticle embedded in a few nanometer thick homogeneous (native) aluminum oxide shell. Other addressed aspects are: (i) the role of the strong interband transition in Al metal, located at 1.5 eV, for the plasmonic excitations of Al nanoparticles, (ii) the role of the native oxide layer, and (iii) the possibility of using the plasmon excitation as an ultrasensitive, remote, real-time probe for studies of oxidation/corrosion kinetics in metal nanoparticle systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app