JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels.

Arsenic trioxide (ATO) can regulate many biological functions such as apoptosis and differentiation in various cells. We investigated an involvement of ROS such as H(2)O(2) and O(2)(*-), and GSH in ATO-treated Calu-6 cell death. The levels of intracellular H(2)O(2) were decreased in ATO-treated Calu-6 cells at 72 h. However, the levels of O(2)(*-) were significantly increased. ATO reduced the intracellular GSH content. Many of the cells having depleted GSH contents were dead, as evidenced by the propidium iodine staining. The activity of CuZn-SOD was strongly down-regulated by ATO at 72 h while the activity of Mn-SOD was weakly up-regulated. The activity of catalase was decreased by ATO. ROS scavengers, Tiron and Trimetazidine did not reduce levels of apoptosis and intracellular O(2)(*-) in ATO-treated Calu-6 cells. Tempol showing a decrease in intracellular O(2)(*-) levels reduced the loss of mitochondrial transmembrane potential (DeltaPsi(m)). Treatment with NAC showing the recovery of GSH depletion and the decreased effect on O(2)(*-) levels in ATO-treated cells significantly inhibited apoptosis. In addition, BSO significantly increased the depletion of GSH content and apoptosis in ATO-treated cells. Treatment with SOD and catalase significantly reduced the levels of O(2)(*-) levels in ATO-treated cells, but did not inhibit apoptosis along with non-effect on the recovery of GSH depletion. Taken together, our results suggest that ATO induces apoptosis in Calu-6 cells via the depletion of the intracellular GSH contents rather than the changes of ROS levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app