Add like
Add dislike
Add to saved papers

Intersystem crossing mediated by photoinduced intramolecular charge transfer: julolidine-anthracene molecules with perpendicular pi systems.

Time-resolved electron paramagnetic resonance studies show that the primary mechanism of triplet formation following photoexcitation of julolidine-anthracene molecules linked by a single bond and having perpendicular pi systems is a spin-orbit, charge-transfer intersystem crossing mechanism (SOCT-ISC). This mechanism depends on the degree of charge transfer from julolidine to anthracene, the dihedral angle (theta1) between their pi systems, and the magnitude of the electronic coupling between julolidine and anthracene. We compare 4-(9-anthracenyl)-julolidine with the more sterically encumbered 4-(9-anthracenyl)-3,5-dimethyljulolidine and find that fixing theta1 congruent with 90 degrees serves to enhance SOCT-ISC by increasing the change in orbital angular momentum accompanying charge transfer. Given that the requirements for the SOCT-ISC mechanism are quite general, we expect it to occur in a variety of electron donor-acceptor systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app