JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gene identification for the cblD defect of vitamin B12 metabolism.

BACKGROUND: Vitamin B12 (cobalamin) is an essential cofactor in several metabolic pathways. Intracellular conversion of cobalamin to its two coenzymes, adenosylcobalamin in mitochondria and methylcobalamin in the cytoplasm, is necessary for the homeostasis of methylmalonic acid and homocysteine. Nine defects of intracellular cobalamin metabolism have been defined by means of somatic complementation analysis. One of these defects, the cblD defect, can cause isolated methylmalonic aciduria, isolated homocystinuria, or both. Affected persons present with multisystem clinical abnormalities, including developmental, hematologic, neurologic, and metabolic findings. The gene responsible for the cblD defect has not been identified.

METHODS: We studied seven patients with the cblD defect, and skin fibroblasts from each were investigated in cell culture. Microcell-mediated chromosome transfer and refined genetic mapping were used to localize the responsible gene. This gene was transfected into cblD fibroblasts to test for the rescue of adenosylcobalamin and methylcobalamin synthesis.

RESULTS: The cblD gene was localized to human chromosome 2q23.2, and a candidate gene, designated MMADHC (methylmalonic aciduria, cblD type, and homocystinuria), was identified in this region. Transfection of wild-type MMADHC rescued the cellular phenotype, and the functional importance of mutant alleles was shown by means of transfection with mutant constructs. The predicted MMADHC protein has sequence homology with a bacterial ATP-binding cassette transporter and contains a putative cobalamin binding motif and a putative mitochondrial targeting sequence.

CONCLUSIONS: Mutations in a gene we designated MMADHC are responsible for the cblD defect in vitamin B12 metabolism. Various mutations are associated with each of the three biochemical phenotypes of the disorder.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app