Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter.

Optics Letters 2008 April 2
A novel flexible scanning optical probe is constructed with a finely etched optical fiber strung through a platinum coil in the lumen of a dissipative polymer. The packaged probe is 2.2 mm in diameter with a rigid length of 6mm when using a ball lens or 12 mm when scanning the fiber proximal to a gradient-index (GRIN) lens. Driven by constant high voltage (1-3 kV) at low current (< 5 microA), the probe oscillates to provide wide forward-viewing angle (13 degrees and 33 degrees with ball and GRIN lens designs, respectively) and high-frame-rate (10-140 fps) operation. Motion of the probe tip is observed with a high-speed camera and compared with theory. Optical coherence tomography (OCT) imaging with the probe is demonstrated with a wavelength-swept source laser. Images of an IR card as well as in vivo Doppler OCT images of a tadpole heart are presented. This optomechanical design offers a simple, inexpensive method to obtain a high-frame-rate forward-viewing scanning probe.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app