Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dexrazoxane protects against doxorubicin-induced cardiomyopathy: upregulation of Akt and Erk phosphorylation in a rat model.

PURPOSE: Dexrazoxane (DZR), a clinically approved cation chelator, is effective in reducing doxorubicin (DOX)-induced heart damage, yet its cardioprotective mechanism is not fully understood. We aimed to investigate the effects of DZR on the activation of Akt and Erk 1/2 signals in a rat model of DOX-induced cardiomyopathy.

METHODS: Male Sprague-Dawley rats received weekly DOX injection (2.5 mg/kg) for 6 weeks, with or without DZR pretreatment at a dose ratio of 20:1. The ventricular functions of these animals were monitored at week 6, 9 and 11 by echocardiography. At week 11, their heart morphology was studied by light and electron microscopy. Phosphorylation of Akt and Erk in heart tissues was measured by Western blot analysis.

RESULTS: DOX caused myocardial damage with compromised left ventricular function, increased myocardium injury and reduced phosphorylation of Akt and Erk. DZR exerted a significant cardioprotective effect in terms of improved fractional shortening, cardiac output and cardiomyopathy score at one or more time points. We also provided the first evidence that dexarazoxane-treated animals had increased levels of Akt and Erk activation, whilst total Akt and Erk remained unchanged.

CONCLUSIONS: Our results showed that the cardioprotective effect of dexarazoxane has been sustained beyond the treatment period. The data also suggested that activation of the Akt and Erk signaling pathways was regulated in the course of DOX-induced cardiomyopathy and protection by DZR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app