JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Cardiac overexpression of alcohol dehydrogenase exacerbates chronic ethanol ingestion-induced myocardial dysfunction and hypertrophy: role of insulin signaling and ER stress.

Chronic alcohol intake leads to alcoholic cardiomyopathy characterized by cardiac hypertrophy and contractile dysfunction possibly related to the toxicity of the ethanol metabolite acetaldehyde. This study examined the impact of augmented acetaldehyde exposure on myocardial function, geometry, and insulin signaling via cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH transgenic and wild-type FVB mice were placed on a 4% alcohol diet for 12 weeks. Echocardiographic, glucose tolerance, glucose uptake, insulin signaling, and ER stress indices were evaluated. Mice consuming alcohol exhibited glucose intolerance, dampened cardiac glucose uptake, cardiac hypertrophy and contractile dysfunction, all of which with the exception of whole body glucose tolerance were exaggerated by the ADH transgene. Cardiomyocytes from ethanol-fed mice exhibited depressed insulin-stimulated phosphorylation insulin receptor (tyr1146) and IRS-1 (tyrosine) as well as enhanced serine phosphorylation of IRS-1. ADH-augmented alcohol-induced effect of IRS-1 phosphorylation (tyrosine/serine). Neither alcohol nor adh affected expression of insulin receptor and IRS-1. Alcohol reduced phosphorylation of Akt and GSK-3beta as well as GSK-3beta expression and the effect was exaggerated by ADH. The transcriptional factors GATA4, c-jun and c-jun phosphorylation were upregulated by alcohol, which was amplified by ADH. The ratios of phospho-c-Jun/c-Jun and phospho-GATA4/GATA4 remained unchanged. Chronic alcohol intake upregulated expression of the endoplasmic reticulum stress markers eIF2alpha, IRE-1alpha, GRP78 and gadd153, the effect of which was exaggerated by ADH. These data suggest that elevated cardiac acetaldehyde exposure via ADH may exacerbate alcohol-induced myocardial dysfunction, hypertrophy, insulin insensitivity and ER stress, indicating a key role of ADH gene in alcohol-induced cardiac dysfunction and insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app