Add like
Add dislike
Add to saved papers

Optimization of conditions for the determination of boron by a ruthenium(II) complex having diol moiety: A mechanistic study.

Talanta 2008 January 16
Two ruthenium(II) complexes, [Ru(bpy)(2)(dhbpy-H(-1))](+) and [Ru(bpy)(2)(dhphen)](2+) (bpy=2,2'-bipyridine, dhbpy=3,3'-dihydroxy-2,2'-bipyridine, dhphen=5,6-dihydroxy-1,10-phenanthroline) were examined for use as a colorimetric reagent for the determination of boron. The reactions of boric acid with these two complexes were thermodynamically and kinetically studied in detail in order to specify the reactive species and to set up optimum condition for the determination of boron. The detailed analysis of the kinetic data for the reaction of the latter water-soluble complex showed that both boric acid and borate ion were reactive in an alkaline solution. The thermodynamically and kinetically optimum pH for the determination of boron was ca. 9 at 25 degrees C. A spectrofluorimetric determination of boron with the latter complex was attempted at 600nm with excitation at 360nm, and at pH 8.9 using CHES (N-cyclohexyl-2-aminoethanesulfonic acid) buffer. It was found that a trace amount of boron as low as ca. 2x10(-5)M ( approximately 1ppm) could be detectable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app