JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.

Cell Stem Cell 2007 September 14
We mapped Polycomb-associated H3K27 trimethylation (H3K27me3) and Trithorax-associated H3K4 trimethylation (H3K4me3) across the whole genome in human embryonic stem (ES) cells. The vast majority of H3K27me3 colocalized on genes modified with H3K4me3. These commodified genes displayed low expression levels and were enriched in developmental function. Another significant set of genes lacked both modifications and was also expressed at low levels in ES cells but was enriched for gene function in physiological responses rather than development. Commodified genes could change expression levels rapidly during differentiation, but so could a substantial number of genes in other modification categories. SOX2, POU5F1, and NANOG, pluripotency-associated genes, shifted from modification by H3K4me3 alone to colocalization of both modifications as they were repressed during differentiation. Our results demonstrate that H3K27me3 modifications change during early differentiation, both relieving existing repressive domains and imparting new ones, and that colocalization with H3K4me3 is not restricted to pluripotent cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app