JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells.

Glioblastoma is the deadliest brain tumor that remains incurable. We examined efficacy of combination of retinoid and interferon-gamma (IFN-gamma) in human glioblastoma T98G and U87MG cells. We conjectured that retinoid could induce differentiation with down regulation of telomerase activity to increase sensitivity to IFN-gamma for apoptosis in glioblastoma cells. Indeed, treatment of cells with 1 muM all-trans retinoic acid (ATRA) or 1 muM 13-cis retinoic acid (13-CRA) for 7 days induced astrocytic differentiation with upregulation of glial fibrillary acidic protein (GFAP) and down regulation of telomerase activity. Wright staining and ApopTag assay showed, respectively, morphological and biochemical features of apoptosis in glioblastoma cells following exposure to 200 units/ml IFN-gamma for 48 h. Induction of differentiation was associated with decreases in levels of nuclear factor kappa B (NFkappaB), inducible nitric oxide synthase (iNOS), and production of nitric oxide (NO) so as to increase sensitivity to IFN-gamma for apoptosis. Notably, IFN-gamma induced signal transducer and activator of transcription-1 (STAT-1) to bind to gamma-activated sequence (GAS) of the target gene. Also, IFN-gamma activated caspase-8 and cleaved Bid to truncated Bid (tBid) for translocation to mitochondria. Fura-2 assay showed increases in intracellular free [Ca2+] and activation of calpain in apoptotic cells. Besides, increases in Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and Smac into the cytosol activated caspase-9 and caspase-3 for apoptosis. Taken together, our results showed that retinoid induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to IFN-gamma for increasing apoptosis in human glioblastoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app