Add like
Add dislike
Add to saved papers

Smad signaling in the rat model of monocrotaline pulmonary hypertension.

Toxicologic Pathology 2008 Februrary
Mutations in the bone morphogenetic protein receptor type II (BMPrII) gene have been implicated in the development of familial pulmonary artery hypertension (PAH). The function of BMP signal transduction within the pulmonary vasculature and the role BMPrII mutations have in the development of PAH are incompletely understood. We used the monocrotaline (MCT) model of PAH to examine alterations in Smad signal transduction pathways in vivo. Lungs harvested from Sprague-Dawley rats treated with a single 60-mg/kg intraperitoneal (IP) injection of MCT were compared to saline-treated controls 2 weeks following treatment. Smad 4 was localized by immunohistochemistry to endothelial nuclei of the intra-acinar vessels undergoing remodeling. Smad 4, common to both BMP and transforming growth factor beta (TGFbeta) signaling, and BMP-specific Smad 1 were significantly decreased in western blot from whole lungs of treated animals, while no change was found for TGFbeta-specific Smad 2. MCT-treated rats also had increased expression of phosphorylated Smad 1 (P-Smad 1) but not phosphorylated Smad 2 (P-Smad 2). There was a decrease in the expression of the full BMPrII protein but not its short form variant in MCT-treated rat lungs. The type I receptor Alk1 had increased expression. Collectively, our data indicate that vascular remodeling in the MCT model is associated with alterations in BMP receptors and persistent endothelial Smad 1 signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app