JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multivariate cluster analysis to study motility activation of Solea senegalensis spermatozoa: a model for marine teleosts.

Reproduction 2008 April
Computer-assisted sperm analysis (CASA) and clustering analysis have enabled to study sperm subpopulations in mammals, but their use in fish sperm has been limited. We have used spermatozoa from Senegalese sole (Solea senegalensis) as a model for subpopulation analysis in teleostei using two different activating solutions. Semen from six males was activated using 1100 mOsm/kg solutions: artificial seawater (ASW) or sucrose solution (SUC). Motility was acquired at 15, 30, 45, and 60 s post-activation. CASA parameters were combined into two principal components, which were used in a non-hierarchical clustering analysis, obtaining four subpopulations (CL): CL1 (slow/non-linear), CL2 (slow/linear), CL3 (fast/non-linear), and CL4 (fast/linear). We detected spermatozoa lysis, especially in ASW. Sperm motility was higher for SUC and decreased with time. The subpopulation proportions varied with time and activating treatment, showing both an increase in CL1 and CL2 and a decrease in CL3 and CL4 with time. Both CL3 and CL4 were higher in samples activated with SUC, at least in early post-activation. Proportions of CL3 and CL4 at 15 s were associated with higher quality at 60 s and with lower lysis. A second clustering analysis was conducted, classifying the males accordingly to their motility subpopulations. This analysis showed a high heterogeneity between samples. Subpopulation analysis of CASA data can be applied to Solea spermatozoa, allowing identification of potentially interesting sperm subpopulations. Future studies might benefit from these techniques to establish the relationship of these subpopulations with fish sperm quality and fertility, helping to characterize males according to their reproductive potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app