JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Rapid electrical lysis of bacterial cells in a microfluidic device.

Electrical lysis of biological cells on a microfluidic platform has evoked significant interest because of its applications in rapid recovery of intracellular contents such as nucleic acids or proteins without introducing lytic agents. Applying a direct current (DC) field for cell lysis typically requires field strength of 1-10 kV/cm, which is dependent on the cell type: prokaryotes or eukaryotes. Bubble generation and Joule heating can often be induced under such high field strengths. In this study we fabricated a simple microfluidic device using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance, which was able to lyse green fluorescent protein (GFP)-expressing Escherichia coli cells under continuous DC voltage while cells were flowing through the channels. The cell lysis only happened in a defined section of a microfluidic channel because of local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis severalfold. The cell lysis was verified by plate count on nutrient agar plates and by fluorescence spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app