Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome.

BACKGROUND: Short QT syndrome (SQTS) is a primary electrical disease of the heart associated with a high risk of sudden cardiac death. A gain-of-function in I(Kr), due to a mutation in KCNH2, underlies SQT1.

OBJECTIVE: This study sought to examine the cellular basis for arrhythmogenesis in an experimental model of SQT1 created using PD-118057, a novel I(Kr) agonist.

METHODS: Transmembrane action potentials were simultaneously recorded from epicardial, M, and endocardial regions of arterially perfused canine left ventricular (LV) wedge preparations, together with a pseudo-electrocardiogram.

RESULTS: PD-118057 (10 micromol/l) abbreviated the QT interval from 267 +/- 4 to 232 +/- 4 ms and increased transmural dispersion of repolarization (TDR) from 33.7 +/- 2.0 to 49.1 +/- 3.1 ms (P <.001). T-wave amplitude increased from 18.0% +/- 1.4% to 23.1% +/- 1.7% of R-wave amplitude (P =.027). Reversing the direction of activation of the LV wall (epicardial pacing) resulted in an increase in QT interval from 269 +/- 5 to 282 +/- 5 ms and an increase in TDR from 34.1 +/- 2.0 to 57.6 +/- 3.3 ms (P <.001) under baseline conditions. PD-118057 abbreviated the QT interval from 282 +/- 5 to 258 +/- 5 ms and produced a proportional decrease in effective refractory period (ERP). TDR increased from 57.6 +/- 3.3 to 77.6 +/- 4.3 ms (P <.001). Polymorphic ventricular tachycardia (pVT) was induced in 10 of 20 preparations with a single S(2) applied to epicardium. Quinidine (10 micromol/l) increased the ERP and QT interval, did not significantly alter TDR, and prevented induction of pVT in 5 of 5 preparations.

CONCLUSION: Our results suggest that a combination of ERP abbreviation and TDR amplification underlie the development of pVT in SQT1 and that quinidine prevents pVT principally by prolonging ERP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app