JOURNAL ARTICLE

Electronic couplings and on-site energies for hole transfer in DNA: systematic quantum mechanical/molecular dynamic study

Alexander A Voityuk
Journal of Chemical Physics 2008 March 21, 128 (11): 115101
18361616
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the pi stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares V(2) and the energies of basepair triplets XG(+)Y and XA(+)Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15,000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B-DNA structure and show that in several important cases the couplings calculated for the idealized B-DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, approximately 0.07 eV, while the interstrand couplings are quite different. The energies of hole states G(+) and A(+) in the stack depend on the nature of the neighboring pairs. The XG(+)Y are by 0.5 eV more stable than XA(+)Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18361616
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"