JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity.

Antituberculosis drug-induced hepatotoxicity (ATDH) complicates the treatment of 5-10% of patients treated for active tuberculosis (TB). Knowledge regarding the mechanism of toxicity is still incomplete. Metabolism and the formation of toxic metabolites of the TB drugs may play an important role in the development of ATDH. We studied hepatotoxicity and interactions between isoniazid (INH), its toxic metabolite hydrazine (HYD), rifampicin (RIF) and pyrazinamide (PZA) in human hepatoma cells (HepG2). After 24h pre-treatment with a non-toxic concentration of one of the four compounds, cells were exposed to increasing concentrations of INH, HYD, RIF or PZA. To determine whether pre-treatment increased toxicity, changes in the concentration at which 50% of cell growth was inhibited (IC50) were quantified using the WST-1 cytotoxicity assay. Pre-treatment with INH, HYD or RIF decreased the INH IC50 by 24%, 26% and 15%, respectively, meaning that INH toxicity was increased. INH and HYD pre-treatment decreased the PZA IC50 by 30% and 38%, respectively. HYD and RIF toxicity were not affected by the pre-treatments. The present study is the first to demonstrate that pre-treatment with INH or its toxic metabolite HYD increases the in vitro toxicity of PZA. In addition, pre-treatment with INH, HYD or RIF increases the in vitro toxicity of INH. These results give us greater insight into the development of ATDH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app