Add like
Add dislike
Add to saved papers

Alpha-lipoic acid suppresses 6-hydroxydopamine-induced ROS generation and apoptosis through the stimulation of glutathione synthesis but not by the expression of heme oxygenase-1.

Brain Research 2008 April 25
We previously reported that the generation of reactive oxygen species (ROS) is the initial event in cell death induced by 6-hydroxydopamine (6-OHDA), an experimental model of Parkinsonism. Since recent studies suggested the important role of antioxidant activity of alpha-lipoic acid (LA) in the suppression of apoptosis of various types, we studied the effect on 6-OHDA-induced apoptosis of PC12 cells. Biochemical analysis revealed that LA suppressed the 6-OHDA-induced ROS generation, increase of caspase-like activity and chromatin condensation. The suppression of 6-OHDA-induced apoptosis by LA required pre-incubation of PC12 cells with LA for 12-24 h. LA increased the intracellular levels of heme oxygenase-1 (HO-1) and glutathione (GSH) and stimulated the expression of GSH synthesis-related genes such as cystine/glutamate antiporter and gamma-glutamylcysteine synthetase (gamma-GCS). However, Sn-mesoporphyrin IX, an inhibitor of HO-1, did not attenuate the LA-induced suppression of apoptosis. In contrast, buthionine sulfoximine, an inhibitor of gamma-GCS, attenuated the LA-induced suppression of ROS generation and chromatin condensation. In addition, a transcription factor Nrf2, which regulates the expression of antioxidant enzymes such as gamma-GCS, translocated to the nucleus by LA. These results suggested that LA suppressed the 6-OHDA induced-apoptosis by the increase in cellular glutathione through stimulation of the GSH synthesis system but not by the expression of HO-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app