OPEN IN READ APP
JOURNAL ARTICLE

Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study

Satoru Nakashita, Daisuke N Saito, Takanori Kochiyama, Manabu Honda, Hiroki C Tanabe, Norihiro Sadato
Brain Research Bulletin 2008 March 28, 75 (5): 513-25
18355627
To explore the neural substrates of visual-tactile crossmodal integration during motion direction discrimination, we conducted functional magnetic resonance imaging with 15 subjects. We initially performed independent unimodal visual and tactile experiments involving motion direction matching tasks. Visual motion discrimination activated the occipital cortex bilaterally, extending to the posterior portion of the superior parietal lobule, and the dorsal and ventral premotor cortex. Tactile motion direction discrimination activated the bilateral parieto-premotor cortices. The left superior parietal lobule, intraparietal sulcus, bilateral premotor cortices and right cerebellum were activated during both visual and tactile motion discrimination. Tactile discrimination deactivated the visual cortex including the middle temporal/V5 area. To identify the crossmodal interference of the neural activities in both the unimodal and the multimodal areas, tactile and visual crossmodal experiments with event-related designs were also performed by the same subjects who performed crossmodal tactile-visual tasks or intramodal tactile-tactile and visual-visual matching tasks within the same session. The activities detected during intramodal tasks in the visual regions (including the middle temporal/V5 area) and the tactile regions were suppressed during crossmodal conditions compared with intramodal conditions. Within the polymodal areas, the left superior parietal lobule and the premotor areas were activated by crossmodal tasks. The left superior parietal lobule was more prominently activated under congruent event conditions than under incongruent conditions. These findings suggest that a reciprocal and competitive association between the unimodal and polymodal areas underlies the interaction between motion direction-related signals received simultaneously from different sensory modalities.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
18355627
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"