Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments?

Relationships between the short-term mono-methyl mercury (MeHg) production, determined as the specific, potential methylation rate constant Km (day(-1)) after 48 h of incubation with isotope-enriched 201Hg(II) at 23 degrees C, and the long-term accumulation of ambient MeHg, were investigated in contaminated sediments. The sediments covered a range of environments from small freshwater lakes to large brackish water estuaries and differed with respect to source and concentration of Hg, salinity, primary productivity, quantity and quality of organic matter, and temperature climate. Significant (p < 0.001), positive relationships were observed between Km (day(-1)) and the concentration of MeHg normalized to total Hg (%MeHg) for surface sediments (0-10, 0-15, and in one case 0-20 cm) across all environments, and across subsets of organic and minerogenic freshwaters. This suggests that the methylation process (MeHg production) overruled demethylation and net transport processes in the surface sediments. The lack of a relationship between Km and %MeHg in two brackish water sediment depth profiles (0-100 cm) indicates that demethylation and the net effect of input-output are relatively more important at greater depths. Differences in the primary production and subsequent availability of easily degradable organic matter (serving as electron donor for methylating bacteria) was indicated to be the most important factor behind observed differences in %MeHg and Km among sites. In contrast, concentrations of sulfate were not correlated to Km, %MeHg, or absolute concentrations of MeHg. We conclude that total concentrations of Hg are of importance for the long-term accumulation of MeHg, and that %MeHg in surface sediments can be used as a proxy for the rate of methylation, across a range of sites from different environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app